入出力遅延も学習対象

現実的なAIの外界入力を考えたときに、かならず通信路やデバイスの遅延があるわけだが、遅延はそのまま環境と自己の特性として学習する必要がある。そのときタイマー付きノード(遅延ノード)で考えると、それらを全部まとめた形で入力しても問題がないことになる。

分離できない遅延はそのまま「遅延がないもの」として学習を進めてよいし、途中のIO(皮膚触感や筋肉緊張など)の入力も織り交ぜて入力すれば、個々でのずれが発生順序の時刻のずれとして学習されていく。

どちらにしても入出力の遅延も含めて学習対象として、そのまま入力してよいわけになる。
発火の時刻の照合が教師である点はそのままでよい。
実際、デバイスとノードのエミュレータとの通信をプログラムとして書くと、イベントのプールとスタックで記述することになったので、遅延は実装の上ではかなり考慮が必要だった(時刻をイベントに記録するとか)が、学習システム側ではそれも含めて対象としてよい考えて作っていた。

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

CAPTCHA